题目内容

已知:如图,点B,F,C,E在同一直线上,AC,DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=CE.求证:∠ACB=∠DFE.
考点:全等三角形的判定与性质
专题:证明题
分析:由BF=CE,两边加上CF,得到BC=EF,再由AB⊥BE,DE⊥BE得到一对直角相等,利用HL得到三角形ABC与三角形DEF全等,由全等三角形对应角相等即可得证.
解答:证明:∵BF=CE,
∴BF+CF=CE+CF,即BC=EF,
∵AB⊥BE,DE⊥BE,
∴∠B=∠E=90°,
在Rt△ABC与Rt△DEF中,
AC=DF
BC=EF

∴Rt△ABC≌Rt△DEF(HL),
∴∠ACB=∠DFE.
点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网