题目内容

9.已知:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,点E是AC边上的一个动点(点E与点A、C不重合).
(1)当a、b满足a2+b2-16a-12b+100=0,且c是不等式组$\left\{\begin{array}{l}{\frac{x+12}{4}≤x+6}\\{\frac{2x+2}{3}>x-3}\end{array}\right.$的最大整数解,试求△ABC的三边长;
(2)在(1)的条件得到满足的△ABC中,若设AE=m,则当m满足什么条件时,BE分△ABC的周长的差不小于2?

分析 (1)根据a2+b2-16a-12b+100=0,且c是不等式组$\left\{\begin{array}{l}{\frac{x+12}{4}≤x+6}\\{\frac{2x+2}{3}>x-3}\end{array}\right.$的最大整数解,可以分别求得a、b、c的值,然后根据勾股定理的逆定理可以判断△ABC的形状;
(2)由题意可以得到关于m的不等式,从而可以解答本题.

解答 解:(1)∵a2+b2-16a-12b+100=0,
∴(a-8)2+(b-6)2=0,
∴a-8=0,b-6=0,
得a=8,b=6,
解$\left\{\begin{array}{l}{\frac{x+12}{4}≤x+6}\\{\frac{2x+2}{3}>x-3}\end{array}\right.$
得,-4≤x<11,
∵c是不等式组$\left\{\begin{array}{l}{\frac{x+12}{4}≤x+6}\\{\frac{2x+2}{3}>x-3}\end{array}\right.$的最大整数解,
∴c=10,
∵a=8,b=8,c=10,62+82=102
∴△ABC是直角三角形;
(2)由题意可得,
|(AB+AE)-(BC+CE)|≥2,
即|(10+m)-(8+6-m)|≥2,
解得,m≥3或m≤1,
即当m≥3或m≤1时,BE分△ABC的周长的差不小于2.

点评 本题考查一元一次不等式组的应用,勾股定理的逆定理,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网