题目内容

10.如图,正方形ABCD中,AB=2,点E为BC边上的一个动点,连接AE,作∠EAF=45°,交CD边于点F,连接EF.若设BE=x,则△CEF的周长为4.

分析 先根据正方形的性质得AB=AD,∠BAD=∠B=90°,把△ADF绕点A顺时针旋转90°可得到△ABG,接着利用“SAS”证明△EAG≌△EAF,得到EG=EF=BE+DF,然后利用三角形周长的定义得到△CEF的周长=CE+CF+BE+DF=CB+CD,由此即可解决问题.

解答:∵四边形ABCD为正方形,
∴AB=AD,∠BAD=∠B=90°,
∴把△ADF绕点A顺时针旋转90°可得到△ABG,如图,
∴AG=AF,BG=DF,∠GAF=90°,∠ABG=∠B=90°,
∴点G在CB的延长线上,
∵∠EAF=45°,
∴∠EAG=∠GAF-∠EAF=45°,
∴∠EAG=∠EAF,
在△EAG和△EAF中,
$\left\{\begin{array}{l}{AE=AE}\\{∠EAG=∠EAF}\\{AG=AF}\end{array}\right.$,
∴△EAG≌△EAF(SAS),
∴EG=EF,
而EG=BE+BG=BE+DF,
∴EF=BE+DF,
∴△CEF的周长=CE+CF+BE+DF=CB+CD=2+2=4.
故答案为4.

点评 本题考查了全等三角形的判定与性质、正方形的性质等知识,解题的关键是利用旋转添加辅助线构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网