ÌâÄ¿ÄÚÈÝ
2£®ÎÒÃÇѧϰÁËÕûʽµÄ³Ë·¨ºó£¬¿É½øÐÐÈçϼÆË㣺£¨a+b£©1=a+b£»£¨a+b£©2=a2+2ab+b2£»£¨a+b£©3=£¨a+b£©2£¨a+b£©=a3+3a2b+3ab2+b3£»¡
Èç¹ûÎÒÃǶԣ¨a+b£©n £¨nÈ¡ÕýÕûÊý£©µÄ¼ÆËã½á¹ûÖи÷ÏîϵÊý½øÒ»²½Ñо¿£¬¿ÉÒÔÁгöÏÂ±í£º
| £¨a+b£©1=a+b | 1 | 1 | ||||||||
| £¨a+b£©2=a2+2ab+b2 | 1 | 2 | 1 | |||||||
| £¨a+b£©3=a3+3a2b+3ab2+b3 | 1 | 3 | 3 | 1 | ||||||
| ¡ | ¡ |
£¨1£©Çë×Ðϸ¹Û²ì±íÖеĹæÂÉ£¬Ð´³ö£¨a+b£©4Õ¹¿ªÊ½ÖÐËùȱµÄϵÊý£º£¨a+b£©4=a4+a3b+a2b2+ab3+b4
£¨2£©Çëд³ö£¨a+b£©5µÄÕ¹¿ªÊ½£º£¨a+b£©5=£¨a+b£©5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
£¨3£©µ±n=1¡¢2¡¢3¡¢4¡¢¡Ê±£¬£¨a+b£©nÕ¹¿ªÊ½µÄµÚÈýÏîϵÊý·Ö±ðΪ0¡¢1¡¢3¡¢6¡¢¡£¬²ÂÏ루a+b£©nÕ¹¿ªÊ½µÄµÚÈýÏîϵÊýΪ$\frac{n£¨n-1£©}{2}$£¨Óú¬nµÄ´úÊýʽ±íʾ£©£»
£¨4£©µ±n=1¡¢2¡¢3¡¢4¡¢¡Ê±£¬£¨a+b£©nÕ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍ·Ö±ðΪ2¡¢4¡¢8¡¢16¡¢¡£¬²ÂÏ루a+b£©nÕ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ2n£¨Óú¬nµÄ´úÊýʽ±íʾ£©£®
·ÖÎö £¨1£©¸ù¾Ý¡°Ñî»ÔÈý½Ç¡±ÖÐϵÊý¹æÂÉÈ·¶¨³öËùÇóϵÊý¼´¿É£»
£¨2£©¸ù¾Ý¡°Ñî»ÔÈý½Ç¡±ÖÐϵÊý¹æÂÉÈ·¶¨³öËùÇóÕ¹¿ªÊ½¼´¿É£»
£¨3£©¸ù¾Ý¡°Ñî»ÔÈý½Ç¡±ÖÐϵÊý¹æÂÉÈ·¶¨³öËùÇóϵÊý£¬²ÂÏëµÃµ½½á¹û¼´¿É£»
£¨4£©¸ù¾Ý¡°Ñî»ÔÈý½Ç¡±ÖÐϵÊý¹æÂÉÈ·¶¨³öËùÇóϵÊý£¬²¢Çó³öϵÊýÖ®ºÍ¼´¿É£®
½â´ð ½â£º£¨1£©£¨a+b£©4Õ¹¿ªÊ½ÖÐËùȱµÄϵÊý£º£¨a+b£©4=a4+4a3b+6a2b2+4ab3+b4£»
£¨2£©£¨a+b£©5µÄÕ¹¿ªÊ½£º£¨a+b£©5=a5+5a4b+10a3b2+10a2b3+5ab4+b5£»
£¨3£©µ±n=1¡¢2¡¢3¡¢4¡¢¡Ê±£¬£¨a+b£©nÕ¹¿ªÊ½µÄµÚÈýÏîϵÊý·Ö±ðΪ 0¡¢1¡¢3¡¢6¡¢¡£¬²ÂÏ루a+b£©nÕ¹¿ªÊ½µÄµÚÈýÏîϵÊýΪ$\frac{n£¨n-1£©}{2}$£»
£¨4£©µ±n=1¡¢2¡¢3¡¢4¡¢¡Ê±£¬£¨a+b£©nÕ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍ·Ö±ðΪ2¡¢4¡¢8¡¢16¡¢¡£¬²ÂÏ루a+b£©nÕ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ2n£®
¹Ê´ð°¸Îª£º£¨2£©£¨a+b£©5=a5+5a4b+10a3b2+10a2b3+5ab4+b5£»£¨3£©0£¬1£¬3£¬6£¬$\frac{n£¨n-1£©}{2}$£»£¨4£©2£¬4£¬8£¬16£¬2n
µãÆÀ ´ËÌ⿼²éÁËÕûʽµÄ»ìºÏÔËË㣬ŪÇå¡°Ñî»ÔÈý½Ç¡±ÖÐϵÊý¹æÂÉÊǽⱾÌâµÄ¹Ø¼ü£®
| A£® | 130¡ã | B£® | 125¡ã | C£® | 120¡ã | D£® | 115¡ã |
| A£® | 9b2-a2 | B£® | a2-3b2 | C£® | a2-9b2 | D£® | a2+9b2 |
| A£® | $\frac{12}{5}$ | B£® | 4 | C£® | $\frac{12\sqrt{5}}{5}$ | D£® | 2$\sqrt{5}$ |