题目内容
8.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?
(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.
(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画图并说明理由.
分析 (1)用角的度数除以转动速度即可得;
(2)根据∠AOC=30°、OM恰好平分∠BOC知∠BOM=75°,进而可知旋转的度数,结合旋转速度可得时间t;
(3)分别根据转动速度关系和OC平分∠MOB画图即可.
解答 解:(1)∵30÷3=10,
∴10秒后ON与OC重合;
(2)∵∠AON+∠BOM=90°,∠COM=∠MOB,
∵∠AOC=30°,
∴∠BOC=2∠COM=150°,
∴∠COM=75°,
∴∠CON=15°,
∴∠AON=∠AOC-∠CON=30°-15°=15°,
解得:t=15°÷3°=5秒;
(3)∵∠AON+∠BOM=90°,∠BOC=∠COM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON为3t,∠AOC为30°+6t,
∴∠COM为$\frac{1}{2}$(90°-3t),
∵∠BOM+∠AON=90°,
可得:180°-(30°+6t)=$\frac{1}{2}$(90°-3t),
解得:t=$\frac{70}{3}$秒;
如图:![]()
点评 此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
练习册系列答案
相关题目
16.如果$\frac{|a|}{a}$+$\frac{|b|}{b}$+$\frac{|c|}{c}$=-1,那么$\frac{ab}{|ab|}$+$\frac{bc}{|bc|}$+$\frac{ac}{|ac|}$+$\frac{abc}{|abc|}$的值为( )
| A. | -2 | B. | -1 | C. | 0 | D. | 不确定 |
20.
如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )
| A. | 2sinα | B. | 2cosα | C. | $\frac{1}{sinα}$ | D. | $\frac{1}{2cosα}$ |
18.已知a、b都是不为0的常数,如果多项式(x+a)(x+b)的乘积中不含x项,则有( )
| A. | a-b=0 | B. | ab=1 | C. | a+b=0 | D. | ab=-1 |