题目内容

5.有这样一个问题:探究函数y=$\frac{2x-6}{x-2}$的图象与性质.
小慧根据学习函数的经验,对函数y=$\frac{2x-6}{x-2}$的图象与性质进行了探究.
下面是小慧的探究过程,请补充完成:
(1)函数y=$\frac{2x-6}{x-2}$的自变量x的取值范围是x≠2;
(2)列出y与x的几组对应值.请直接写出m的值,m=3;
x-3-2011.52.5m467
y2.42.5346-2011.51.6
(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出该函数的两条性质:
①该函数图象是轴对称图形;②该函数图象不经过原点.

分析 (1)分式的分母不等于零;
(2)根据图表可知当y=0时所对应的x值为m,把y=0代入解析式即可求得;
(3)根据坐标系中的点,用平滑的直线连接即可;
(4)可以从对称性、增减性、渐近性、最值、连续性、与坐标轴交点、图象所在象限等方面作答.

解答 解:(1)依题意得:x-2≠0,
解得x≠2,
故答案是:x≠2;

(2)把y=0代入y=$\frac{2x-6}{x-2}$,得
0=$\frac{2m-6}{m-2}$,
解得m=3.
故答案是:3;

(3)如图所示:


(4)由(3)中的图象得到:该函数图象是轴对称图形,该函数图象不经过原点等.
故答案是:该函数图象是轴对称图形,该函数图象不经过原点等.

点评 本题考查了反比例函数的图象和性质,根据图表画出函数的图象是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网