题目内容

14.如图,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC等于(  )
A.10°B.15°C.22.5°D.30°

分析 根据矩形性质得出∠D=∠ABC=90°,AD=BC,DC∥AB,推出AE=2AD,得出∠DEA=30°=∠EAB,求出∠EBA的度数,即可求出答案.

解答 解:∵四边形ABCD是矩形,
∴∠D=∠ABC=90°,AD=BC,DC∥AB.
∵AB=AE,AB=2CB,
∴AE=2AD.
∴∠DEA=30°.
∵DC∥AB,
∴∠DEA=∠EAB=30°.
∵AE=AB,
∴∠ABE=∠AEB=$\frac{1}{2}$(180°-∠EAB)=75°.
∵∠ABC=90°,
∴∠EBC=90°-75°=15°.
故选:B.

点评 本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网