题目内容

19.如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.

分析 DC⊥OE,先证明四边形OCED是平行四边形,再由矩形的性质得出OC=OD,证出四边形OCED是菱形,得出对角线互相垂直即可.

解答 解:OE⊥DC,理由如下:
∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
∴OC=$\frac{1}{2}$AC,OD=$\frac{1}{2}$BD,AC=BD,
∴OC=OD,
∴四边形OCED是菱形,
∴OE⊥DC.

点评 本题考查了平行四边形的判定、矩形的性质、菱形的判定与性质;熟练掌握矩形的性质和菱形的判定与性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网