题目内容

6.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线EG与AB的交点,连接DE交AC于点F.试说明:△AEF是等腰三角形.

分析 先根据EG是线段BD的垂直平分线得出∠DEG=∠BEG,再由∠ACB=90°可知AC∥EG,故∠AFE=∠DEG,∠A=∠BEG,所以∠A=∠AFE,由此即可得出结论.

解答 证明:∵EG是线段BD的垂直平分线,
∴∠DEG=∠BEG,
∵∠ACB=90°,
∴AC∥EG,
∴∠AFE=∠DEG,∠A=∠BEG,
∴∠A=∠AFE,
∴△AEF是等腰三角形.

点评 本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网