题目内容

14.如图,AB是⊙O的直径,C为圆周上一点,BD是⊙0的切线,B为切点.
(1)在图(1)中,∠BAC=30°,求∠DBC的度数;
(2)在图(2)中,∠BA1C=40°,求∠DBC的度数;
(3)在图(3)中,∠BA2C=α,求∠DBC的度数;
(4)通过(1)(2)(3)的探究你发现了什么?用你自己的语言叙述你的发现.

分析 (1)由切线的性质和圆周角定理以及角的互余关系得出∠DBC=∠A=30°即可;
(2)连接AC,由(1)得出∠DBC=∠A,由圆周角定理得出∠A=∠A1,即可得出∠DBC=∠BA1C=40°;
(3)由(2)得出∠DBC=∠BA2C=α即可;(4)∠DBC等于$\widehat{BC}$所对的圆周角,得出弦切角定理.

解答 解:(1)∵BD是⊙0的切线,
∴∠ABO=90°,
即∠ABC+∠DBC=90°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠A+∠ABC=90°,
∴∠DBC=∠A=30°;
(2)连接AC,如图所示:
由(1)得:∠DBC=∠A,
又∵∠A=∠A1
∴∠DBC=∠BA1C=40°;
(3)由(2)得:∠DBC=∠BA2C=α;
(4)∠DBC等于$\widehat{BC}$所对的圆周角;
弦切角等于它夹的弧所对的圆周角.

点评 本题考查了圆周角定理、弦切角定理;熟练掌握圆周角定理是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网