题目内容
19.分析 由旋转的性质可知:?ABCD全等于?A1BC1D1,所以BC=BC1,所以∠BCC1=∠C1,又因为旋转角∠∠ABA1=∠CBC1,根据等腰三角形的性质计算即可.
解答 解:∵?ABCD绕顶点B顺时针旋转到?A1BC1D1,
∴BC=BC1,
∴∠BCC1=∠C1,
∵∠A=70°,
∴∠C=∠C1=70°,
∴∠BCC1=∠C1,
∴∠CBC1=180°-2×70°=40°,
∴∠ABA1=40°,
故答案为:40.
点评 本题考查了平行四边形的性质、旋转的性质、等腰三角形的判定和性质以及三角形的内角和定理,解题的关键是证明三角形CBC1是等腰三角形.
练习册系列答案
相关题目
11.用配方法解一元二次方程:x2-6x-9=0,下列变形正确的是( )
| A. | (x+3)2=0 | B. | (x-3)2=0 | C. | (x+3)2=18 | D. | (x-3)2=18 |
8.我县某商场计划购进甲、乙两种商品共80件,这两种商品的进价、售价如表所示:
设其中甲种商品购进x件,售完此两种商品总利润为y元.
(1)写出y与x的函数关系式;
(2)该商场计划最多投入1500元用于购进这两种商品共80件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?
| 进价(元/件) | 售价(元/件) | |
| 甲种商品 | 15 | 20 |
| 乙种商品 | 25 | 35 |
(1)写出y与x的函数关系式;
(2)该商场计划最多投入1500元用于购进这两种商品共80件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?