题目内容
16.分析 根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°,再根据 三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
解答
解:连接AC,
∵四边形ABCD是正方形,
∴AC=BD,
∵CE=BD,
∴CE=AC,
∴∠E=∠CAE,
∵AC是正方形ABCD的对角线,
∴∠ACB=45°,
∴∠E+∠CAE=45°,
∴∠E=$\frac{1}{2}$×45°=22.5°,
在△CEF中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.
点评 本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,等边对等角,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
练习册系列答案
相关题目
5.下列命题是真命题的是( )
| A. | 如果x2>0,则x>0 | |
| B. | 平行四边形是轴对称图形 | |
| C. | 等边三角形是中心对称图形 | |
| D. | 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等 |