题目内容

11.某扇形的圆心角为45°,面积为 18π,该扇形的弧长为3π.

分析 根据扇形面积公式S=$\frac{nπ{r}^{2}}{360}$,求得r,再由弧长公式l=$\frac{nπr}{180}$,计算即可.

解答 解:∵扇形的圆心角为45°,面积为 18π,
∴18π=$\frac{45π{r}^{2}}{360}$,
∴r=12,
∵l=$\frac{nπr}{180}$,
∴l=$\frac{45π×12}{180}$=3π,
故答案为3π.

点评 本题考查了扇形的面积公式和弧长公式,解题的关键是掌握扇形面积公式S=$\frac{nπ{r}^{2}}{360}$和弧长公式l=$\frac{nπr}{180}$.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网