题目内容

20.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE所叠得△DFE,延长EF交边AB于点G,连接DG,BF,给出以下结论:
①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=$\frac{72}{5}$.
其中所有正确结论的序号是①②④.

分析 根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定Rt△ADG≌Rt△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的,问题得解.

解答 解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
在Rt△ADG和Rt△FDG中,
$\left\{\begin{array}{l}{AD=DF}\\{DG=DG}\end{array}\right.$,
∴Rt△ADG≌Rt△FDG,故①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12-x,
由勾股定理得:EG2=BE2+BG2
即:(x+6)2=62+(12-x)2
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,故②正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,故③错误;
S△GBE=$\frac{1}{2}$×6×8=24,S△BEF=$\frac{EF}{EG}$•S△GBE=$\frac{6}{10}$=$\frac{72}{5}$,故④正确.
综上可知正确的结论的是3个,
故答案为:①②④.

点评 本题考查了相似三角形的判定和性质、图形的翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网