题目内容

解方程时,把某个式子看做整体,用新的未知数去代替它,使方程得到简化,这叫换元法,先阅读下面的解题过程,再解后面的方程:
例:解方程 2
x
-3=0

解:设
x
=t,(t≥0)
∴原方程可化为2t-3=0                
t=
3
2
,∴
x
=
3
2
,x=
9
4

请利用前面的方法,解方程
x+2
x
-8=0.
考点:无理方程
专题:换元法
分析:
x
=t,则x=t2,则原方程化为t2+2t-8=0,求出方程的解,即可求出答案.
解答:解:设
x
=t,则x=t2
原方程化为t2+2t-8=0,
解得:t1=-4,t2=2,
当t=-4时,
x
=-4,此时方程无解,
当t=2时,
x
=2,
解得:x=4,
经检验x=4是原方程的解,
即原方程的解为x=4.
点评:本题考查了用换元法解无理方程的应用,解此题的关键是能把无理方程转化成有理方程,题目比较好,难度适中.
练习册系列答案
相关题目
问题提出:从A到B共有8个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶.那么该同学从A走到B共有多少种不同的走法?
问题探究:为解决上述实际问题,我们先建立如下数学模型:
用若干个边长都为1的正方形(记为1×1矩形)和若干个边长分别为1和2的矩形(记为1×2矩形),如图1,要拼成一个边长分别为1和n的矩形(记为1×n矩形),如图2,有多少种不同的拼法?(设A1×n表示不同拼法的个数)

为解决上述数学模型问题,我们采取的策略和方法是:一般问题特殊化.
探究一:先从最特殊的情形入手,即要拼成一个1×1矩形,有多少种不同拼法?
显然,只有1种拼法,如图3,即A1×1=1种.
探究二:要拼成一个1×2矩形,有多少种不同拼法?不难看出,有2种拼法,如图4,即A1×2=2种.
探究三:要拼成一个1×3矩形,有多少种不同拼法?拼图方法可分为两类:一类是在图4这2种1×2矩形
上方,各拼上一个1×1矩形,即这类拼法共有A1×2=2种;另一类是在图3这1种1×1矩形上方拼上一个1×2矩形,即这类拼法有A1×1=1种,如图5.即A1×3=A1×2+A1×1=2+1=3(种).
探究四:要拼成一个1×4矩形,有多少种不同拼法?拼图方法可分为两类:一类是在图5这3种1×3矩形上方,各拼上一个1×1矩形,即这类拼法共有A1×3=3种;另一类是在图4这2种1×2矩形上方,各拼上一个1×2矩形,即这类拼法共有A1×2=2种,如图6.即A1×4=A1×3+A1×2=3+2=5(种).
探究五:要拼成一个1×5矩形,有多少种不同拼法A1×5?仿照上述探究过程进行解答,并求出A1×5(不需画图).
探究六:一般的,要拼成一个1×n矩形(n≥3的整数),有A1×n=
 
 种不同拼法.(已知A1×(n-1)=a,A1×(n-2)=b,)
问题解决:把“问题提出”中的实际问题,转化为“问题探究”中的数学模型,并进行解答.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网