【题目】某手机厂商推出一次智能手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的方差大小(不计算具体值,给出结论即可);
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取2名用户,求2名用户评分小于90分的概率.
【题目】已知椭圆: , 分别是其左、右焦点,以线段为直径的圆与椭圆有且仅有两个交点.
(1)求椭圆的方程;
(2)设过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,点横坐标的取值范围是,求的最小值.
【题目】下列命题中错误的是( )
A. 如果平面外的直线不平行于平面,则平面内不存在与平行的直线
B. 如果平面平面,平面平面, ,那么直线平面
C. 如果平面平面,那么平面内所有直线都垂直于平面
D. 一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交
【题目】如图,在四棱锥中,底面为正方形, 底面, , 为棱中点.
(1)求证: 平面;
(2)若为中点, ,试确定的值,使二面角的余弦值为.
【题目】已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
【题目】在如图所示的几何体中,底面ABCD中,AB⊥AD,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形.
(1)求证:平面DEC⊥平面BDE;
(2)求点A到平面BDE的距离.
【题目】已知函数.
(1)判断函数的奇偶性;
(2)对任意两个实数,求证:当时, ;
(3)对任何实数, 恒成立,求实数的取值范围.
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取3名用户,求3名用户评分小于90分的人数的分布列和期望.
(1)若是的单调递增函数,求实数的取值范围;
(2)当时,求证:函数有最小值,并求函数最小值的取值范围.
【题目】已知点是长轴长为的椭圆: 上异于顶点的一个动点, 为坐标原点, 为椭圆的右顶点,点为线段的中点,且直线与的斜率之积恒为.
(2)设过左焦点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,点横坐标的取值范围是,求的最小值.