题目内容

【题目】如图,在四棱锥中,底面为正方形, 底面 为棱中点.

(1)求证: 平面

(2)若中点, ,试确定的值,使二面角的余弦值为.

【答案】(I) 见解析; (II) .

【解析】试题分析:(1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,而线线垂直的寻找与论证,往往从两个方面进行,一是利用条件中的线面垂直性质定理得到线线垂直,二是利用平几知识,如等腰三角形性质得到线线垂直,(2)研究二面角的大小,一般方法为利用空间向量数量积,即先根据条件建立恰当的空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求出两法向量夹角,再根据二面角与两法向量夹角关系列方程,解出参数.

试题解析:(I)证明:∵底面 底面,∴

又∵底面为矩形,∴ 平面 平面

平面,又平面,∴ 中点,∴ 平面 平面,∴平面.

(II) 以为原点,以轴正方向,建立空间直角坐标系,令

,   

设平面的法向量 ,即

设平面的法向量

,解得.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网