例5.(2004年天津卷理22)椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)()的准线与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.

  (1)求椭圆的方程及离心率;

(2)若,求直线PQ的方程;

(3)设(),过点P且平行于准线的直线与椭圆相交于另一点M,证明.

分析:本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.

(1)解:由题意,可设椭圆的方程为.

  由已知得解得

所以椭圆的方程为,离心率.

(2)解:由(1)可得A(3,0).

设直线PQ的方程为.由方程组

       得

依题意,得.

设,则,   ① .    ②

由直线PQ的方程得.于是

.    ③

∵,∴.    ④

由①②③④得,从而.

所以直线PQ的方程为或

(2)证明:.由已知得方程组

  注意,解得

因,故

.

而,所以.

由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,而新课程高考则突出了对向量与解析几何结合考查,这就要求我们在平时的解析几何教学与复习中,应抓住时机,有效地渗透向量有关知识,树立应用向量的意识。应充分挖掘课本素材,在教学中从推导有关公式、定理,例题讲解入手,让学生去品位、去领悟,在公式、定理的探索、形成中逐渐体会向量的工具性,逐渐形成应用向量的意识,在教学中还应注重引导学生善于运用一些问题的结论,加以引申,使之成为解题方法,体会向量解题的优越性,在教学中还应注重引导学生善于运用向量方法解题,逐步树立运用向量知识解题的意识。

例4、(2003年天津)已知常数,向量,经过原点以为方向向量的直线与经过定点以为方向向量的直线相交于点,其中.试问:是否存在两个定点,使得为定值,若存在,求出的坐标;若不存在,说明理由.

(本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力.)

解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得点P到两定点距离的和为定值.

∵,  ∴=(λ,a),=(1,-2λa).

因此,直线OP和AP的方程分别为   和 .

消去参数λ,得点的坐标满足方程.

整理得  ……①       因为所以得:

(i)当时,方程①是圆方程,故不存在合乎题意的定点E和F;

   (ii)当时,方程①表示椭圆,焦点和为合乎题意的两个定点;

   (iii)当时,方程①也表示椭圆,焦点和为合乎题意的两个定点.

点评:本题以平面向量为载体,考查求轨迹的方法、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力。去掉平面向量的背景,我们不难看到,本题即为下题:

在△OAP中,O(0,0)、A(0,a)为两个定点,另两边OP与AP的斜率分别是,求P的轨迹。

而课本上有一道习题(数学第二册(上)第96页练习题4):

三角形ABC的两个顶点A、B的坐标分别是(-6,0)、(6,0),边AC、BC所在直线的斜率之积等于,求顶点C的轨迹方程。通过本例可见高考题目与课本的密切关系。

 0  7719  7727  7733  7737  7743  7745  7749  7755  7757  7763  7769  7773  7775  7779  7785  7787  7793  7797  7799  7803  7805  7809  7811  7813  7814  7815  7817  7818  7819  7821  7823  7827  7829  7833  7835  7839  7845  7847  7853  7857  7859  7863  7869  7875  7877  7883  7887  7889  7895  7899  7905  7913  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网