2.答案:D
解析:设=(x,y),=(3,1),=(-1,3),α=(3α,α),
β=(-β,3β)
又α+β=(3α-β,α+3β)
∴(x,y)=(3α-β,α+3β),∴
又α+β=1 因此可得x+2y=5
评述:本题主要考查向量法和坐标法的相互关系及转换方法.
1.答案:D
解析:因为(a·b)c=|a|·|b|·cosθ·c而a(b·c)=|b|·|c|·cosα·a而c方向与a方向不一定同向.
评述:向量的积运算不满足结合律.
29.(1995上海,21)如图5-13在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.
(1)求向量的坐标;
(2)设向量和的夹角为θ,求cosθ的值.
●答案解析
28.(1999上海,20)如图5-12,在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)求异面直线AE与CD所成角的大小.
27.(2000全国理,18)如图5-11,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形且∠C1CB=∠C1CD=∠BCD=60°.
(1)证明:C1C⊥BD;
(2)假定CD=2,CC1=,记面C1BD为α,面CBD为β,求二面角α-BD-β的平面角的余弦值;
(3)当的值为多少时,能使A1C⊥平面C1BD?请给出证明.
26.(2000天津、江西、山西)如图5-10所示,直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求的长;
(2)求cos< >的值;
(3)求证:A1B⊥C1M.
25.(2000上海,18)如图5-9所示四面体ABCD中,AB、BC、BD两两互相垂直,且AB=BC=2,E是AC中点,异面直线AD与BE所成的角的大小为arccos,求四面体ABCD的体积.
图5-9 图5-10 图5-11
24.(2000上海春,21)四棱锥P-ABCD中,底面ABCD是一个平行四边形, ={2,-1,-4},={4,2,0},={-1,2,-1}.
(1)求证:PA⊥底面ABCD;
(2)求四棱锥P-ABCD的体积;
(3)对于向量a={x1,y1,z1},b={x2,y2,z2},c={x3,y3,z3},定义一种运算:
(a×b)·c=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1,试计算(×)·的绝对值的值;说明其与四棱锥P-ABCD体积的关系,并由此猜想向量这一运算(×)·的绝对值的几何意义.
23.(2001上海)在棱长为a的正方体OABC-O′A′B′C′中,E、F分别是棱AB、BC上的动点,且AE=BF.如图5-8.
(1)求证:A′F⊥C′E.
(2)当三棱锥B′-BEF的体积取得最大值时,求二面角B′-EF-B的大小(结果用反三角函数表示)
22.(2001上海春)在长方体ABCD-A1B1C1D1中,点E、F分别在BB1、DD1上,且AE⊥A1B,AF⊥A1D.
(1)求证:A1C⊥平面AEF;
(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角).则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.
试根据上述定理,在AB=4,AD=3,AA1=5时,求平面AEF与平面D1B1BD所成角的大小.(用反三角函数值表示)