据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确判断的方法叫图解法或数形结合法。

[例10](97年高考题)椭图C与椭圆+=1关于直线x+y=0对称,椭圆C的方程是_____。

   A.+=1    B. +=1

   C. +=1    D. +=1

[解]图解法:作出椭圆及对称的椭圆C,由中心及焦点位置,容易得到选A。

[另解]直接法:设椭圆C上动点(x,y),则对称点(-y,-x),代入已知椭圆方程得+=1,整理即得所求曲线C方程,所以选A。

[例11](87年高考题)在圆x+y=4上与直线4x+3y-12=0距离最小的点的坐标是_____。

      y      O    x

    A.  ()   B. (,-)    C. (-,)   D. (-,-)

[解]图解法:在同一直角坐标系中作出圆x+y=4和直线4x+3y-12=0后,由图可知距离最小的点在第一象限内,所以选A。

[直接法]先求得过原点的垂线,再与已知直线相交而得。

    M - i         2 

[例12]已知复数z的模为2,则 |z-i| 的最大值为_______。

    A. 1    B. 2    C.    D. 3

[解]图解法:由复数模的几何意义,画出右图,可知当圆上的点到M的距离最大时即为|z-i|最大。所以选D;

[另解]不等式法或代数法或三角法:

|z-i|≤|z|+|i|=3,所以选D。

数形结合,借助几何图形的直观性,迅速作正确的判断是高考考查的重点之一;97年高考选择题直接与图形有关或可以用数形结合思想求解的题目约占50%左右。

从考试的角度来看,解选择题只要选对就行,不管是什么方法,甚至可以猜测。但平时做题时要尽量弄清每一个选择支正确理由与错误的原因,这样,才会在高考时充分利用题目自身的提供的信息,化常规为特殊,避免小题作,真正做到熟练、准确、快速、顺利完成三个层次的目标任务。

Ⅱ、巩固性题组:

1.(86年高考题)函数y=()+1的反函数是______。

  A. y=logx+1 (x>0)    B. y=log5+1 (x>0且x≠1)

  C. y=log(x-1)  (x>1)   D. y=logx-1  (x>1)

用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确判断的方法叫特例法。常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。

[例4](97年高考题)定义在区间(-∞,∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是(  )

  A. ①与④     B. ②与③   C. ①与③     D. ②与④

[解]令f(x)=x,g(x)=|x|,a=2,b=1,则:f(b)-f(-a)=1-(-2)=3, g(a)-g(-b)=2-1=1,得到①式正确;f(a)-f(-b)=2-(-1)=3, g(b)-g(-a)=1-2=-1,得到③式正确。所以选C。

[另解]直接法:f(b)-f(-a)=f(b)+f(a),g(a)-g(-b)=g(a)-g(b)=f(a)-f(b),从而①式正确;f(a)-f(-b)=f(a)+f(b),g(b)-g(-a)=g(b)-g(a)=f(b)-f(a),从而③式正确。所以选C。

[例5](85年高考题)如果n是正偶数,则C+C+…+C+C=______。

   A. 2    B. 2    C. 2    D. (n-1)2

[解]用特值法:当n=2时,代入得C+C=2,排除答案A、C;当n=4时,代入得C+C+C=8,排除答案D。所以选B。

[另解]直接法:由二项展开式系数的性质有C+C+…+C+C=2,选B。

当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得愈简单愈好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。近几年高考选择题中可用或结合特例法解答的约占30%左右。

直接从题设条件出发,运用有关概念、性质、定理、法则等知识,通过推理运算,得出结论,再对照选择项,从中选正确答案的方法叫直接法。

[例1](96年高考题)若sinx>cosx,则x的取值范围是______。

   A.{x|2k<x<2k+,kZ}   B. {x|2k+<x<2k+,kZ}

   C. {x|k<x<k+,kZ}    D. {x|k+<x<k+,kZ}

 

[解]直接解三角不等式:由sinx>cosx得cosx-sinx<0,即cos2x<0,所以:    +2kπ<2x<+2kπ,选D;

[另解]数形结合法:由已知得|sinx|>|cosx|,画出单位圆:

利用三角函数线,可知选D。

[例2](96年高考题)设f(x)是(-∞,∞)是的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于______。

    A. 0.5    B. -0.5   C. 1.5    D. -1.5

[解]由f(x+2)=-f(x)得f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5),由f(x)是奇函数得f(-0.5)=-f(0.5)=-0.5,所以选B。

也可由f(x+2)=-f(x),得到周期T=4,所以f(7.5)=f(-0.5)=-f(0.5)=-0.5。

[例3](87年高考题)七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是_____。

    A. 1440   B. 3600    C. 4320   D. 4800

[解一]用排除法:七人并排站成一行,总的排法有P种,其中甲、乙两人相邻的排法有2×P种。因此,甲、乙两人必需不相邻的排法种数有:P-2×P=3600,对照后应选B;

[解二]用插空法:P×P=3600。

直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。直接法适用的范围很广,只要运算正确必能得出正确的答案。提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错。

 0  441249  441257  441263  441267  441273  441275  441279  441285  441287  441293  441299  441303  441305  441309  441315  441317  441323  441327  441329  441333  441335  441339  441341  441343  441344  441345  441347  441348  441349  441351  441353  441357  441359  441363  441365  441369  441375  441377  441383  441387  441389  441393  441399  441405  441407  441413  441417  441419  441425  441429  441435  441443  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网