2.用钢笔或圆珠笔直接答在试卷上。
1.答卷前将密封线内的项目填写清楚。
2. 在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
(11)设S为等差数列a,的前n项和,若S-10, S=-5,则公差为 (用数字作答).
(12)对a,bR,记max|a,b|=函数f(x)=max||x+1|,|x-2||(xR)的最小值是 .
(13)设向量a,b,c满足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,则|a|+|c|的值是
(14)正四面体ABCD的棱长为1,棱AB∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .
(15)如图,函数y=2sin(πxφ),x∈R,(其中0≤φ≤)的图象与y轴交于点(0,1).
(Ⅰ)求φ的值;
(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求
(16)设f(x)=3ax,f(0)>0,f(1)>0,求证:
(Ⅰ)a>0且-2<<-1;
(Ⅱ)方程f(x)=0在(0,1)内有两个实根.
(17)如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.
(Ⅰ)求证:PB⊥DM;
(Ⅱ)求CD与平面ADMN所成的角
(18)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.两甲,乙两袋中各任取2个球.
(Ⅰ)若n=3,求取到的4个球全是红球的概率;
(Ⅱ)若取到的4个球中至少有2个红球的概率为,求n.
(19)如图,椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,
且椭圆的离心率e=.
(Ⅰ)求椭圆方程;
(Ⅱ)设F、F分别为椭圆的左、右焦点,M为线段AF的中点,求证:∠ATM=∠AFT.
(20)已知函数f(x)=x+ x,数列|x|(x>0)的第一项x=1,以后各项按如下方式取定:曲线x=f(x)在处的切线与经过(0,0)和(x,f (x))两点的直线平行(如图)
.
求证:当n时,
(Ⅰ)x
(Ⅱ)
1. 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
。故由前已证,知,且
现在由题设取则是增数列。又易知
的面积为,从而。令。由得两根从而易知函数在内是增函数。而在内是减函数。
(II)高点的坐标为,则由及椭圆方程易知因,故
证:(I)由题设及椭圆的几何性质有,故。设,则右准线方程为.因此,由题意应满足即解之得:。即从而对任意
(22)(本小题12分)