5.(江西21)已知函数![]()
(1)求函数
的单调区间;
(2)若函数
的图像与直线
恰有两个交点,求
的取值范围.
解:(1)因为
令
得
由
时,
在
根的左右的符号如下表所示
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
极小值 |
|
极大值 |
|
极小值 |
|
所以
的递增区间为
的递减区间为
(2)由(1)得到
,![]()
要使
的图像与直线
恰有两个交点,只要
或
,
即
或
.
3.(福建21)(本小题满分12分)
已知函数
的图象过点(-1,-6),且函数
的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调区间;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
解:(1)由函数f(x)图象过点(-1,-6),得m-n=-3, ……①
由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,
则g(x)=f′(x)+6x=3x2+(2m+6)x+n;
而g(x)图象关于y轴对称,所以-
=0,所以m=-3,
代入①得n=0.
于是f′(x)=3x2-6x=3x(x-2).
由f′(x)>得x>2或x<0,
故f(x)的单调递增区间是(-∞,0),(2,+∞);
由f′(x)<0得0<x<2,
故f(x)的单调递减区间是(0,2).
(Ⅱ)由(Ⅰ)得f′(x)=3x(x-2),
令f′(x)=0得x=0或x=2.
当x变化时,f′(x)、f(x)的变化情况如下表:
|
X |
(-∞.0) |
0 |
(0,2) |
2 |
(2,+ ∞) |
|
f′(x) |
+ |
0 |
- |
0 |
+ |
|
f(x) |
|
极大值 |
|
极小值 |
|
由此可得:
当0<a<1时,f(x)在(a-1,a+1)内有极大值f(O)=-2,无极小值;
当a=1时,f(x)在(a-1,a+1)内无极值;
当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值;
当a≥3时,f(x)在(a-1,a+1)内无极值.
综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值.
2.(北京17)(本小题共13分)
已知函数
,且
是奇函数.
(Ⅰ)求
,
的值;
(Ⅱ)求函数
的单调区间.
解:(Ⅰ)因为函数
为奇函数,
所以,对任意的
,
,即
.
又![]()
所以
.
所以![]()
解得
.
(Ⅱ)由(Ⅰ)得
.
所以
.
当
时,由
得
.
变化时,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
0 |
|
0 |
|
所以,当
时,函数
在
上单调递增,在
上单调递减,在
上单调递增.
当
时,
,所以函数
在
上单调递增.