7.如图,AB//CD,AE//FD,AE、FD分别交BC于点G、H,则图中共有相似三角形( )
(A)4对 (B) 5对 (C) 6对 (D)7对
6.若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r3,r4,r6,则r3:r4:r6等于( )
(A) (B)
(C) (D)
5.如图,在梯形ABCD中,AB//CD,中位线EF与对角线AC、BD交于M、N两点,若EF=18cm,MN=8cm,则AB的长等于( )
(A)10cm (B)13cm(C)20cm (D)26cm
4.若0<x<1,则x,x2,x3的大小关系是( )
(A)x<x2<x3 (B)x<x3<x2 (C)x3<x2<x (D)x2<x3<x
3.已知,则的值等于( )
(A)6 (B)-6 (C) (D)
2.下列图形中,为轴对称图形的是( )
1.下列判断中正确的是( )
(A)四边相等的四边形是正方形 (B) 四角相等的四边形是正方形
(C) 对角线互相垂直的平行四边形是正方形
(D) 对角线互相垂直平分且相等的四边形是正方形
28.解(1)抛物线过,
·········································································································· 1分
点在抛物线上,
,
点的坐标为.·················································································· 3分
(2)由(1)得,
,,
.······························································································· 6分
(3)的面积有最大值,············································································ 7分
的对称轴为,,
点的坐标为,··················································································· 8分
由(1)得,
而
,······························································································ 10分
的对称轴是,
当时,取最大值,
其最大值为. 12分
25.解:(1),,.····················································· 2分
(2)分别过点作轴的垂线,垂足分别为,
分别过作于,于点.
在平行四边形中,,又,
.
又,
.·································································································· 5分
,.
设.由,得.
由,得..································ 7分
(此问解法多种,可参照评分)
(3),或,.························· 9分
(4)若为平行四边形的对角线,由(3)可得.要使在抛物线上,
则有,即.
(舍去),.此时.································································ 10分
若为平行四边形的对角线,由(3)可得,同理可得,此时.
综上所述,当时,抛物线上存在点,使得以为顶点的四边形是平行四边形.
符合条件的点有,,. 12分
乐山市2007年28.如图(16),抛物线的图象与轴交于两点,与轴交于点,其中点的坐标为;直线与抛物线交于点,与轴交于点,且.
(1)用表示点的坐标;
(2)求实数的取值范围;
(3)请问的面积是否有最大值?
若有,求出这个最大值;若没有,请说明理由.
(1).··································································································· 2分
(2)点的运动速度为2个单位/秒.·········································································· 4分
(3)()
································································································ 6分
当时,有最大值为,
此时.····································································································· 9分
(4)当点沿这两边运动时,的点有2个.····································· 11分
①当点与点重合时,,
当点运动到与点重合时,的长是12单位长度,
作交轴于点,作轴于点,
由得:,
所以,从而.
所以当点在边上运动时,的点有1个.··································· 13分
②同理当点在边上运动时,可算得.
而构成直角时交轴于,,
所以,从而的点也有1个.
所以当点沿这两边运动时,的点有2个.······································· 14分
无锡市2007年28.(本小题满分10分)
如图,平面上一点从点出发,沿射线方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以为对角线的矩形的边长;过点且垂直于射线的直线与点同时出发,且与点沿相同的方向、以相同的速度运动.
(1)在点运动过程中,试判断与轴的位置关系,并说明理由.
(2)设点与直线都运动了秒,求此时的矩形与直线在运动过程中所扫过的区域的重叠部分的面积(用含的代数式表示).
解:(1)轴.···························· 1分
理由:中,,.····· 2分
设交于点,交轴于点,矩形的对角线互相平分且相等,则,
,过点作轴于,则,,,,轴.······················· 3分
(2)设在运动过程中与射线交于点,过点且垂直于射线的直线交于点,过点且垂直于射线的直线交于点,则.
,,,,.
······································ 4分
①当,即时,.·············· 6分
②当,即时,设直线交于,交于,则,,,
.··········· 8分
③当,即时,,
………………………………………………10分
扬州市2007年26.(本题满分14分)
如图,矩形中,厘米,厘米().动点同时从点出发,分别沿,运动,速度是厘米/秒.过作直线垂直于,分别交,于.当点到达终点时,点也随之停止运动.设运动时间为秒.
(1)若厘米,秒,则______厘米;
(2)若厘米,求时间,使,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形与梯形的面积相等,求的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形,梯形,梯形的面积都相等?若存在,求的值;若不存在,请说明理由.
26.(1),
(2),使,相似比为
(3),
,即,
当梯形与梯形的面积相等,即
化简得,
,,则,
(4)时,梯形与梯形的面积相等
梯形的面积与梯形的面积相等即可,则
,把代入,解之得,所以.
所以,存在,当时梯形与梯形的面积、梯形的面积相等.
江西省南昌市2007年25.实验与探究
(1)在图1,2,3中,给出平行四边形的顶点的坐标(如图所示),写出图1,2,3中的顶点的坐标,它们分别是 , , ;
(2)在图4中,给出平行四边形的顶点的坐标(如图所示),求出顶点的坐标(点坐标用含的代数式表示);
归纳与发现
(3)通过对图1,2,3,4的观察和顶点的坐标的探究,你会发现:无论平行四边形处于直角坐标系中哪个位置,当其顶点坐标为(如图4)时,则四个顶点的横坐标之间的等量关系为 ;纵坐标之间的等量关系为 (不必证明);
运用与推广
(4)在同一直角坐标系中有抛物线和三个点,(其中).问当为何值时,该抛物线上存在点,使得以为顶点的四边形是平行四边形?并求出所有符合条件的点坐标.