摘要:28.解(1)抛物线过. ·········································································································· 1分 点在抛物线上. . 点的坐标为.·················································································· 3分 得. .. .······························································································· 6分 (3)的面积有最大值.············································································ 7分 的对称轴为.. 点的坐标为.··················································································· 8分 由(1)得. 而 .······························································································ 10分 的对称轴是. 当时.取最大值. 其最大值为. 12分
网址:http://m.1010jiajiao.com/timu3_id_450913[举报]
抛物线y=ax2-4ax+b经过A(1,0),F(4,-3),与y轴交于点C,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,连接PC,将线段PC绕着P点逆时针旋转90°至线段PC1,使得C1落在抛物线上?若存在,求点P的坐标;若不存在,请说明理由;
(3)点D是抛物线在x轴上方部分的一点,过D作DE∥AC与y轴交于E,且四边形ACED是等腰梯形,求出D的坐标.
查看习题详情和答案>>
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,连接PC,将线段PC绕着P点逆时针旋转90°至线段PC1,使得C1落在抛物线上?若存在,求点P的坐标;若不存在,请说明理由;
(3)点D是抛物线在x轴上方部分的一点,过D作DE∥AC与y轴交于E,且四边形ACED是等腰梯形,求出D的坐标.
抛物线y=a(x+6)2-3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.
(1)求这个抛物线的解析式;
(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;
(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.

查看习题详情和答案>>
(1)求这个抛物线的解析式;
(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;
(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.
抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
(1)根据上表填空:
①抛物线与x轴的交点坐标是
②抛物线经过点 (-3,
③在对称轴右侧,y随x增大而
(2)试确定抛物线y=ax2+bx+c的解析式.
查看习题详情和答案>>
| x | … | -2 | -1 | 0 | 1 | 2 | … |
| y | … | 0 | -4 | -4 | 0 | 8 | … |
①抛物线与x轴的交点坐标是
(-2,0)
(-2,0)
和(1,0)
(1,0)
;②抛物线经过点 (-3,
8
8
);③在对称轴右侧,y随x增大而
增大
增大
;(2)试确定抛物线y=ax2+bx+c的解析式.