把AB向右移动一段距离,AB长L,速度v,匀强磁场B
当B⊥L,L⊥v,B⊥v时有
|
推广:已知:B,L,ω 求:E=?
例题举例:
[例1]如图所示,长L1宽L2的矩形线圈电阻为R,处于磁感应强度为B的匀强磁场边缘,线圈与磁感线垂直。求:将线圈以向右的速度v匀速拉出磁场的过程中,⑴拉力F大小; ⑵拉力的功率P; ⑶拉力做的功W; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。
解:⑴
⑵![]()
⑶
⑷![]()
⑸
与v无关
注意电热Q和电荷q的区别,其中
与速度无关!(这个结论以后经常会遇到)。
[例2]如图,竖直放置的U形导轨宽为L,上端串有电阻R(其余导体部分的电阻都忽略不计)。磁感应强度为B的匀强磁场方向垂直于纸面向外。金属棒ab的质量为m,与导轨接触良好,不计摩擦。从静止释放后ab保持水平而下滑。试求ab下滑的最大速度vm
解:释放瞬间ab只受重力,开始向下加速运动。随着速度的增大,感应电动势E、感应电流I、安培力F都随之增大,加速度随之减小。当F增大到F=mg时,加速度变为零,这时ab达到最大速度。
由
,可得![]()
[例3] 如图所示,U形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R。从t=0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B=kt,(k>0)那么在t为多大时,金属棒开始移动?
解:由
= kL1L2可知,回路中感应电动势是恒定的,电流大小也是恒定的,但由于安培力F=BIL∝B=kt∝t,随时间的增大,安培力将随之增大。当安培力增大到等于最大静摩擦力时,ab将开始向左移动。这时有:![]()
[例4]如图所示,水平面上固定有平行导轨,磁感应强度为B的匀强磁场方向竖直向下。同种合金做的导体棒ab、cd横截面积之比为2∶1,长度和导轨的宽均为L,ab的质量为m ,电阻为r,开始时ab、cd都垂直于导轨静止,不计摩擦。给ab一个向右的瞬时冲量I,在以后的运动中,cd的最大速度vm、最大加速度am、产生的电热各是多少?
解:给ab冲量后,ab获得速度向右运动,回路中产生感应电流,cd受安培力作用而加速,ab受安培力而减速;当两者速度相等时,都开始做匀速运动。所以开始时cd的加速度最大,最终cd的速度最大。全过程系统动能的损失都转化为电能,电能又转化为内能。由于ab、cd横截面积之比为2∶1,所以电阻之比为1∶2,根据Q=I 2Rt∝R,所以cd上产生的电热应该是回路中产生的全部电热的2/3。又根据已知得ab的初速度为v1=I/m,因此有:
,解得
。最后的共同速度为vm=2I/3m,系统动能损失为ΔEK=I 2/ 6m,其中cd上产生电热Q=I 2/ 9m
[例5]如图所示,空间存在垂直于纸面的均匀磁场,在半径为的圆形区域内部及外部,磁场方向相反,磁感应强度的大小均为B。一半径为,电阻为R的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合。当内、外磁场同时由B均匀地减小到零的过程中,通过导线截面的电量____________。
解析:由题意知:
,
,
由
[例6]如图所示是一种测量通电螺线管中磁场的装置,把一个很小的测量线圈A放在待测处,线圈与测量电量的冲击电流计G串联,当用双刀双掷开关S使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G测出电量Q,就可以算出线圈所在处的磁感应强度B。已知测量线圈共有N匝,直径为d,它和表G串联电路的总电阻为R,则被测处的磁感强度B为多大?
解析:当双刀双掷开关S使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得:![]()
由欧姆定律得:![]()
由上述二式可得:![]()
3、磁通量的变化率
――单位时间内的磁通量的变化
|