3、动态平衡问题:解析法和图象法。

解析法:对研究对象形的任一状态进行受力分析,建立平衡方程,求出因变量与自变量的一般函数关系,然后根据自变量变化情况而确定因变量的变化情况。

图象法:对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出若干状态下的平衡图,再由边角变化关系确定某些力的大小及方向的变化情况。

[例14]如图所示,在半径为R的光滑半球面正上方距球心h处悬挂一定滑轮,重为G的小球A用绕过滑轮的绳子被站在地面上的人拉住。人拉动绳子,在与球面相切的某点缓慢运动到接近顶点的过程中,试分析半球对小球的支持力N和绳子拉力F如何变化。

解析:小球在重力G,球面的支持力N,绳子的拉力F作用下,处于动态平衡。任选一状态,受力如图4所示。不难看出,力三角形ΔFAG’与几何关系三角形ΔBAO相似,从而有:

,   

(其中G’G等大,L为绳子AB的长度)

由于在拉动过程中,R、h不变,绳长L在减小,可见:球面的支持力大小不变,绳子的拉力在减小。

例15图6-2所示,小圆环重G,固定的竖直大环半径为R,轻弹簧原长为L(L﹤R)其倔强系数为K,接触面光滑,求小环静止时弹簧与竖直方向的夹角θ?

提示:可利用正弦定律求解或三角形相似法求解

例34、如图6-3所示,一轻杆两端固结两个小物体A、B,mA=4mB

跨过滑轮连接A和B的轻绳长为L,求平衡时OA和OB分别多长?

针对训练

4.整体法与隔离法的应用

对于连结体问题,如果能够运用整体法,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法,对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法和隔离法相结合的方法。

隔离法:物体之间总是相互作用的,为了使研究的问题得到简化,常将研究对象从相互作用的物体中隔离出来,而其它物体对研究对象的影响一律以力来表示的研究方法叫隔离法。

整体法:在研究连接体一类的问题时,常把几个相互作用的物体作为一个整体看成一个研究对象的方法叫整体法。

[例9 有一个直角支架AOBAO水平放置,表面粗糙, OB竖直向下,表面光滑。AO上套有小环POB上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图所示)。现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力FN和摩擦力f的变化情况是   B 

A.FN不变,f变大    B.FN不变,f变小  

C.FN变大,f变大    D.FN变大,f变小

  例10图7-1所示,两个完全相同重为G的球,两球与水平面间的动摩擦因数都是μ,一根轻绳两端固结在两个球上,在绳的中点施一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。问当F至少多大时,两球将发生滑动?

  例11图7-3所示,光滑的金属球B放在纵截面为等腰三角形的物体A与竖直墙壁之间,恰好匀速下滑,已知物体A的重力是B的重力的6倍,不计球跟斜面和墙壁之间摩擦,问:物体A与水平面之间的动摩擦因数μ是多少?

3.平衡中的临界、极值问题

当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)时的转折状态叫临界状态。可理解成“恰好出现”或“恰好不出现”。

极限分析法:通过恰当地选取某个物理量推向极端(“极大”、“极小”、“极左”、“极右”)从而把比较隐蔽的临界现象(“各种可能性”)暴露出来,便于解答。

例题分析:

例2、拉力F作用重量为G的物体上,使物体沿水平面匀速前进,如图8-2所示,若物体与地面的动摩擦因数为μ,则拉最小时,力和地面的夹角θ为多大?最小拉力为多少?

(θ=arcCOS1/(1+μ2)1/2时,Fmin=μG/(1+μ2)1/2)

例6如图8-3所示,半径为R,重为G的均匀球靠竖直墙放置,左下有厚为h的木块,若不计摩擦,用至少多大的水平推力F推木块才能使球离开地面?(F=G[h(2R-h)]1/2/(R-h))

[例7跨过定滑轮的轻绳两端,分别系着物体A和物体B,物体A放在倾角为θ的斜面上(如图l-4-3(甲)所示),已知物体A的质量为m ,物体A与斜面的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围。

(物体B的质量的取值范围是:m(sinθ-μcosθ)≤mBm(sinθ+μcosθ))

[例8 用与竖直方向成α=30°斜向右上方,大小为F的推力把一个重量为G的木块压在粗糙竖直墙上保持静止。求墙对木块的正压力大小N和墙对木块的摩擦力大小f

解:当时,f=0;当时,,方向竖直向下;当时,,方向竖直向上。

 0  136730  136738  136744  136748  136754  136756  136760  136766  136768  136774  136780  136784  136786  136790  136796  136798  136804  136808  136810  136814  136816  136820  136822  136824  136825  136826  136828  136829  136830  136832  136834  136838  136840  136844  136846  136850  136856  136858  136864  136868  136870  136874  136880  136886  136888  136894  136898  136900  136906  136910  136916  136924  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网