江苏省海门实验学校2009届高三年级双周考
数 学 试 卷
一、填空题:(每题5分,共70分.把正确答案写在答卷相应位置上)
1.集合S={1,2,3,4,5,6},A是S的一个子集,当xA时,若x-
2.已知函数的定义域为,且,则 .
3.若则的值是 .
4.已知定义在实数集上的偶函数在区间上是单调增函数,则不等式的解集为 .
5.将下面不完整的命题补充完整,并使之成为一个真命题:若函数的图象与函数的图象关于 对称,则函数的解析式为 (填上你认为可以成为真命题的一种情形,不必考虑所有情形).
6.判断的正负 .
7.已知是定义域为的奇函数,在区
间上单调递增,当时,的图像如右图所示:
若:,则的取值范围是 .
8.已知t为常数,函数在区间[0,3]上的最大值为2,则t= __ .
9.已知,
则的最大值为 _______________.
10.直线与函数的图像有相异的三个公共点,则的取值范围是__.
11.若对任意的正实数x成立,
则 ___.
12.已知函数的定义域为R,;若对都有;则的取值范围是 ___.
13.13.对于在区间上有意义的两个函数和,如果对任意,均有, 那么我们称和在上是接近的.若与在闭区间上是接近的,则的取值范围是 .
14.f(x)是定义在(0,+∞)上的非负可导函数,且满足,对任意正数a、b,若a<b,则的大小关系为 .
二、解答题(共90分.解答应写出文字说明、证明过程或演算步骤.)
15.(本题满分14分)设命题p:函数的定义域为R;
命题q:不等式对一切正实数均成立
(1)如果p是真命题,求实数的取值范围;
(2)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围。
16.(本小题满分16分).( 本小题满分16分) 已知函数。
(1)求函数的图像在处的切线方程;
(2)求的最大值;
(3) 设实数,求函数在上的最小值
17.(本小题满分14分).已知函数的定义域为R,对任意实数满足,且.
(1)求;
(2)试用表示;
(3)用,的表达式来表示.
18.(本小题满分16分)已知函数满足,
其中且.
(1)求函数的解析式,并判断其奇偶性单调性;
(2)对于函数,当时,,求实数的取值范围;
(3)当时,的值恒为负数,求的取值范围.
19.(本小题满分14分) 某民营企业生产A、B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位:万元)
(1)分别将A、B两种产品的利润表示为投资的函数关系式,并写出它们的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).
|