摘要:得 ∵0≤t≤2
网址:http://m.1010jiajiao.com/timu_id_150340[举报]
某班t名学生在2011年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组[120,130],下表是按上述分组方法得到的频率分布表:
(Ⅰ) 求t及分布表中x,y,z的值;
(2)校长决定从第一组和第五组的学生中随机抽取2名进行交流,求第一组至少有一名学生被抽到的概率;
(3)设从第一组或第五组中任意抽取的两名学生的数学测试成绩分别记为m,n,求事件“|m-n|≤10”的概率.
查看习题详情和答案>>
分 组 | 频 数 | 频 率 |
[80,90) | x | 0.04 |
[90,100) | 9 | y |
[100,110) | z | 0.38 |
[110,120) | 17 | 0.34 |
[120,130] | 3 | 0.06 |
(2)校长决定从第一组和第五组的学生中随机抽取2名进行交流,求第一组至少有一名学生被抽到的概率;
(3)设从第一组或第五组中任意抽取的两名学生的数学测试成绩分别记为m,n,求事件“|m-n|≤10”的概率.
某班t名学生在2011年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组[120,130],下表是按上述分组方法得到的频率分布表: | ||||||||||||||||||
(2)校长决定从第一组和第五组的学生中随机抽取2名进行交流,求第一组至少有一名学生被抽到的概率; (3)设从第一组或第五组中任意抽取的两名学生的数学测试成绩分别记为m,n,求事件“|m-n|≤10”的概率。 |
设m、t为实数,函数f(x)=
,f(x)的图象在点M(0,f(0))处的切线的斜率为1.
(1)求实数m的值;
(2)若对于任意x∈[-1,2],总存在t,使得不等式f(x)≤2t成立,求实数t的取值范围;设方程x2+2tx-1=0的两个实数根为a,b(a<b),若对于任意x∈[a,b],总存在x1、x2∈[a,b],使得f(x1)≤f(x)≤f(x2)恒成立,记g(t)=f(x2)-f(x1),当g(t)=
时,求实数t的值.
查看习题详情和答案>>
mx+t |
x2+1 |
(1)求实数m的值;
(2)若对于任意x∈[-1,2],总存在t,使得不等式f(x)≤2t成立,求实数t的取值范围;设方程x2+2tx-1=0的两个实数根为a,b(a<b),若对于任意x∈[a,b],总存在x1、x2∈[a,b],使得f(x1)≤f(x)≤f(x2)恒成立,记g(t)=f(x2)-f(x1),当g(t)=
5 |