【题目】如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.
(1)求证:平面平面;
(2)求直线与平面所成的角的正弦值.
【题目】【2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考】已知函数(其中且为常数, 为自然对数的底数, ).
(Ⅰ)若函数的极值点只有一个,求实数的取值范围;
(Ⅱ)当时,若(其中)恒成立,求的最小值的最大值.
【题目】已知直线(为参数),曲线(为参数).
(1)设直线与曲线相交于两点,求劣弧的弧长;
(2)若把曲线上各点的横坐标缩短为原来的,纵坐标缩短为原来的,得到曲线,设点是曲线上的一个动点,求点到直线的距离的最小值,及点坐标.
【题目】已知函数,其导函数为.
(1)当时,若函数在上有且只有一个零点,求实数的取值范围;
(2)当时,若,求的最大值.
【题目】如图,四棱锥中,底面是以为中心的菱形,底面为上一点,且.
(1)求的长;
(2)求二面角的余弦值.
【题目】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.
(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;
(2)质检部门从甲车间8个零件中随机抽取3个零件进行检测,已知三件中有两件是合格品的条件下,另外一件是不合格品的概率.
(3)若从甲、乙两车间12个零件中随机抽取2个零件,用表示乙车间的零件个数,求X的分布列与数学期望.
【题目】已知椭圆的左、右焦点分别为、,焦距为,直线:与椭圆相交于、两点,关于直线的对称点在椭圆上.斜率为的直线与线段相交于点,与椭圆相交于、两点.
(1)求椭圆的标准方程;
(2)求四边形面积的取值范围.
【题目】关于函数,下列说法正确的是( )
(1)是的极大值点 ;(2)函数有且只有1个零点;(3)存在正实数,使得恒成立 ;(4)对任意两个正实数,且,若,则
A. B. C. D.
【题目】在四棱锥中,平面ABCD,是正三角形,AC与BD的交点为M,又,,点N是CD中点.
(1)求证:平面PAD;
(2)求点M到平面PBC的距离.