题目内容
【题目】【2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考】已知函数(其中且为常数, 为自然对数的底数, ).
(Ⅰ)若函数的极值点只有一个,求实数的取值范围;
(Ⅱ)当时,若(其中)恒成立,求的最小值的最大值.
【答案】(Ⅰ) 或;(Ⅱ) .
【解析】试题分析:
(Ⅰ)由题意可知函数的定义域为,其导数为.由或,设,则,分类讨论可得当或时, 只有一个极值点.很明显当时, 只有一个极值点.当时, 有、、三个极值点.则当或时,函数只有一个极值点.
(Ⅱ)依题意得,令,则,分类讨论:当时, ,与恒成立矛盾;当时,只需成立,则,问题转化为求解的最小值,计算可得,即的最小值的最大值为.
试题解析:
(Ⅰ)函数的定义域为,其导数为
.
由或,
设,∵,∴当时, ;当时, .
即在区间上递增,在区间上递减,∴,
又当时, ,当时, 且恒成立.
所以,当或时,方程无根,函数只有一个极值点.
当时,方程的根也为,此时的因式恒成立,
故函数只有一个极值点.
当时,方程有两个根、且, ,∴函数在区间单调递减; 单调递增; 单调递减; 单调递增,此时函数有、、三个极值点.
综上所述,当或时,函数只有一个极值点.
(Ⅱ)依题意得,令,则对,都有成立.
因为,所以当时,函数在上单调递增,
注意到,∴若,有成立,这与恒成立矛盾;
当时,因为在上为减函数,且,所以函数在区间上单调递增,在上单调递减,∴,
若对,都有成立,则只需成立,
,
当时,则的最小值,∵,∴函数在上递增,在上递减,∴,即的最小值的最大值为;
综上所述, 的最小值的最大值为.
【题目】直角三角形中,是的中点,是线段上一个动点,且,如图所示,沿将翻折至,使得平面平面.
(1)当时,证明:平面;
(2)是否存在,使得与平面所成的角的正弦值是?若存在,求出的值;若不存在,请说明理由.
【题目】【2018四川南充高三第二次(3月)高考适应性考试】某校开展“翻转合作学习法”教学试验,经过一年的实践后,对“翻转班”和“对照班”的全部220名学生的数学学习情况进行测试,按照大于或等于120分为“成绩优秀”,120分以下为“成绩一般”统计,得到如下的列联表:
成绩优秀 | 成绩一般 | 合计 | |
对照班 | 20 | 90 | 110 |
翻转班 | 40 | 70 | 110 |
合计 | 60 | 160 | 220 |
(I)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“成绩优秀与翻转合作学习法”有关;
(II)为了交流学习方法,从这次测试数学成绩优秀的学生中,用分层抽样方法抽出6名学生,再从这6名学生中抽3名出来交流学习方法,求至少抽到1名“对照班”学生交流的概率.
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:
售出水量(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(单位:元) | 165 | 142 | 148 | 125 | 150 |
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若与成线性相关,则某天售出9箱水时,预计收入为多少元?
(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;
附:回归方程,其中.