16.在△ABC中,a,b,c分别是三个内角A,B,C的对边,设向量$\overrightarrow{p}$=(b-c,a-c),$\overrightarrow{q}$=(c+a,b),若$\overrightarrow{p}$∥$\overrightarrow{q}$,则角A的大小是( )
A. | 90° | B. | 45° | C. | 60° | D. | 30° |
13.某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
若单科成绩在85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
(2)根据题(1)中表格的数据计算,能否有99%的把握认为学生的数学成绩与物理成绩之间有关系?
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
数学/分 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 |
物理/分 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 |
序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
数学/分 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理/分 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 | 数学成绩不优秀 | 合计 | |
物理成绩优秀 | 5 | 2 | 17 |
物理成绩不优秀 | 1 | 12 | 13 |
合计 | 6 | 14 | 20 |
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据 | 当Χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联; |
当Χ2>2.706时,有90%的把握判定变量A,B有关联; | |
当Χ2>3.841时,有95%的把握判定变量A,B有关联; | |
当Χ2>6.635时,有99%的把握判定变量A,B有关联. |
10.将函数y=cosx的图象向右平移$\frac{π}{2}$个单位,得到函数y=f(x)的图象,则下列说法正确的是( )
0 251616 251624 251630 251634 251640 251642 251646 251652 251654 251660 251666 251670 251672 251676 251682 251684 251690 251694 251696 251700 251702 251706 251708 251710 251711 251712 251714 251715 251716 251718 251720 251724 251726 251730 251732 251736 251742 251744 251750 251754 251756 251760 251766 251772 251774 251780 251784 251786 251792 251796 251802 251810 266669
A. | y=f(x)是偶函数 | B. | y=f(x)的周期为π | ||
C. | y=f(x)的图象关于直线$x=\frac{π}{2}$对称 | D. | y=f(x)的图象关于点$(-\frac{π}{2},0)$对称 |