题目内容
【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)求证:平面AED⊥平面A1FD1;
(2)在AE上求一点M,使得A1M⊥平面ADE.
【答案】
(1)证明:建立如图所示的空间直角坐标系D﹣xyz,
不妨设正方体的棱长为2,则A(2,0,0),E(2,2,1),
F(0,1,0),A1(2,0,2),D1(0,0,2),
设平面AED的法向量为
=(x1,y1,z1),
则 =(x1,y1,z1)(2,0,0)=0,
=(x1,y1,z1)(2,2,1)=0,
∴2x1=0,2x1+2y1+z1=0.
令y1=1,得 =(0,1,﹣2),
同理可得平面A1FD1的法向量 =(0,2,1).
∵ =0,∴ ,
∴平面AED⊥平面A1FD1.
(2)解:由于点M在直线AE上,
设 =λ(0,2,1)=(0,2λ,λ).
可得M(2,2λ,λ),∴ =(0,2λ,λ﹣2),
∵AD⊥A1M,∴要使A1M⊥平面ADE,
只需A1M⊥AE,
∴ =(0,2λ,λ﹣2)(0,2,1)=5λ﹣2=0,
解得λ= .故当A= A时,A1M⊥平面ADE
【解析】(1)建立如图所示的空间直角坐标系D﹣xyz,不妨设正方体的棱长为2,设平面AED的法向量为 =(x1,y1,z1),
利用 =0, =0,得 =(0,1,﹣2),同理可得平面A1FD1的法向量 =(0,2,1).
通过 =0,证明平面AED⊥平面A1FD1.(2)由于点M在直线AE上,设 =(0,2λ,λ). =(0,2λ,λ﹣2),利用AD⊥A1M, =0,推出5λ﹣2=0,
解得λ= .故当A= A时,A1M⊥平面ADE点M在直线AE上,
练习册系列答案
相关题目