题目内容

9.已知△ABC中,角A,B,C所对的边长分别为a,b,c,且满足csinA=$\sqrt{3}$acosC,则sinA+sinB的最大值是$\sqrt{3}$.

分析 根据正弦定理求出角C的大小,利用辅助角公式即可得到结论.

解答 解:∵csinA=$\sqrt{3}$acosC,
∴由正弦定理可得sinCsinA=$\sqrt{3}$sinAcosC,
∴tanC=$\sqrt{3}$,
即C=$\frac{π}{3}$,则A+B=$\frac{2π}{3}$,
∴B=$\frac{2π}{3}$-A,0<A<$\frac{2π}{3}$,
∴sinA+sinB=sinA+sin($\frac{2π}{3}$-A)=sinA+$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA=$\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA=$\sqrt{3}$sin(A+$\frac{π}{6}$),
∵0<A<$\frac{2π}{3}$,
∴$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{5π}{6}$,
∴当A+$\frac{π}{6}$=$\frac{π}{2}$时,sinA+sinB取得最大值$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题主要考查三角函数的化简和求值,利用正弦定理求出C的大小是解决本题的关键,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网