题目内容
3.化简:sin3α±cos3α=(sinα+cosα)(1-$\frac{1}{2}$sin2α)和(sinα-cosα)(1+$\frac{1}{2}$sin2α).分析 利用立方和和立方差公式分解,利用三角函数的基本关系式、倍角公式化简.
解答 解:①sin3α+cos3α=(sinα+cosα)(sin2α-sinαcosα+cos2α)═(sinα+cosα)(1-$\frac{1}{2}$sin2α).
②sin3α-cos3α=(sinα-cosα)(sin2α+sinαcosα+cos2α)═(sinα-cosα)(1+$\frac{1}{2}$sin2α).
故答案为:(sinα+cosα)(1-$\frac{1}{2}$sin2α)和(sinα-cosα)(1+$\frac{1}{2}$sin2α).
点评 本题考查了三角函数式的化简;用到了立方和公式、三角函数的基本关系式、倍角公式.
练习册系列答案
相关题目
8.在数列{an}中,an=2(n-2)×3n-1,则数列{an}的前n项和Tn等于( )
A. | $\frac{(2n-1){3}^{n}+5}{2}$ | B. | $\frac{(2n-3){3}^{n}+5}{2}$ | C. | $\frac{(2n-5){3}^{n}+5}{2}$ | D. | $\frac{(2n+5){3}^{n}+5}{2}$ |
15.学生“如花姐”是2015年我校高一年级“校园歌手大赛”的热门参赛选手之一,经统计,网络投票环节中大众对“如花姐”的投票情况是:
现采用分抽样的方法从所有参与“如花姐”投票的800名观众中抽取一个样本容量为n的样本,若从不喜欢“如花姐”的100名观众中抽取的人数是5人.
(1)求n的值;
(2)若不喜欢“如花姐”的1观众中抽取的5人中恰好3名男生(记为a1,a2,a3)2名女生(记为b1,b2),现将5人看成一个总体,从中随机选出2人,列出所有可能的结果;
(3)在(2)的条件下,求选出的2人中至少有1名女生的概率.
喜爱程度 | 非常喜欢 | 一般 | 不喜欢 |
人数 | 500 | 200 | 100 |
(1)求n的值;
(2)若不喜欢“如花姐”的1观众中抽取的5人中恰好3名男生(记为a1,a2,a3)2名女生(记为b1,b2),现将5人看成一个总体,从中随机选出2人,列出所有可能的结果;
(3)在(2)的条件下,求选出的2人中至少有1名女生的概率.
12.已知非零向量$\overrightarrow{a}$,$\overline{b}$满足($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则( )
A. | $\overrightarrow{a}$=$\overrightarrow{b}$ | B. | |$\overrightarrow{a}$|=|$\overrightarrow{b}$| | C. | $\overrightarrow{a}$⊥$\overrightarrow{b}$ | D. | $\overrightarrow{a}$∥$\overrightarrow{b}$ |