题目内容

1.若函数f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,对任意的m∈[-2,2],f(mx-3)+f(x)<0恒成立,则x的取值范围是(-3,1).

分析 由题意知原函数在R上单调递增,且为奇函数,由f(mx-3)+f(x)<0恒成立得mx-3<-x⇒xm+x-3<0,对所有m∈[-2,2]恒成立,然后构造函数f(m)=xm+x-2,利用该函数的单调性可解得x的范围.

解答 解:函数f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,
即为f(x)=1-$\frac{2}{{e}^{x}+1}$,
则函数在R上单调递增,
又f(-x)=$\frac{{e}^{-x}-1}{{e}^{-x}+1}$=$\frac{1-{e}^{x}}{1+{e}^{x}}$=-f(x),
则为奇函数,
故f(mx-3)+f(x)<0,
则f(mx-3)<-f(x)=f(-x),
此时应有mx-3<-x,
即xm+x-3<0,对所有m∈[-2,2]恒成立,
令g(m)=xm+x-3,
此时只需$\left\{\begin{array}{l}{g(-2)=-x-3<0}\\{g(2)=3x-3<0}\end{array}\right.$即可,
解之得-3<x<1,
则x的取值范围为(-3,1).
故答案为:(-3,1).

点评 本题考查了函数的单调性与奇偶性的综合应用,在解决不等式恒成立问题时注意变换主元的方法,是个中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网