题目内容

8.已知平面中三点A(-1,-1),B(1,2),C(8,-2),判断三角形ABC的形状(  )
A.锐角三角形B.直角三角形C.钝角三角形D.无法判断

分析 根据题意和两点间的距离公式求出各边的平方,判断出最大边和最大角,利用余弦定理求出最大角的余弦值,根据符号即可判断出△ABC的形状.

解答 解:∵三点A(-1,-1),B(1,2),C(8,-2),
∴|AB|2=4+9=13,|AC|2=81+1=82,|BC|2=49+16=65,
则AC是最大边,∠ABC是最大角,
由余弦定理得,cos∠ABC=$\frac{{|AB|}^{2}{+{|BC|}^{2}-|AC|}^{2}}{2|AB||BC|}$
=$\frac{13+65-82}{2\sqrt{13}\sqrt{65}}$=$\frac{-4}{2\sqrt{13}\sqrt{65}}<0$,
∴∠ABC是钝角,则△ABC是钝角三角形,
故选:C.

点评 本题考查余弦定理,两点间的距离公式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网