题目内容
15.已知角α的终边过点P(4,-3).(Ⅰ)写出sinα、cosα、tanα值;
(Ⅱ)求$\frac{{sin(π+α)+2sin(\frac{π}{2}-α)}}{2cos(π-α)}$的值.
分析 (Ⅰ)由角α的终边上点P的坐标,利用任意角的三角函数定义求出sinα、cosα、tanα值即可;
(Ⅱ)原式利用诱导公式化简,把各自的值代入计算即可求出值.
解答 解:(Ⅰ)∵角α的终边过点P(4,-3),
∴sinα=$\frac{-3}{\sqrt{{4}^{2}+(-3)^{2}}}$=-$\frac{3}{5}$,cosα=$\frac{4}{\sqrt{{4}^{2}+(-3)^{2}}}$=$\frac{4}{5}$,tanα=-$\frac{3}{4}$;
(Ⅱ)∵sinα=-$\frac{3}{5}$,cosα=$\frac{4}{5}$,
∴原式=$\frac{-sinα+2cosα}{-2cosα}$=$\frac{\frac{3}{5}+\frac{8}{5}}{-\frac{8}{5}}$=-$\frac{11}{8}$.
点评 此题考查了同角三角函数基本关系的运用,以及任意角的三角函数定义,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目
5.若函数y=x3-$\frac{3}{2}$x2+a在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是( )
A. | -$\frac{1}{2}$ | B. | 0 | C. | $\frac{1}{2}$ | D. | 1 |
10.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(x,4),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x的值为( )
A. | -$\frac{8}{3}$ | B. | -6 | C. | 6 | D. | $\frac{8}{3}$ |
20.设函数f(x)=x2+ax,a∈R,则( )
A. | 存在实数a,使f(x)为偶函数 | |
B. | 存在实数a,使f(x)为奇函数 | |
C. | 对于任意实数a,f(x)在(0,+∞)上单调递增 | |
D. | 对于任意实数a,f(x)在(0,+∞)上单调递减 |
10.夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是( ) 米.
A. | 1800 | B. | 1700 | C. | 1600 | D. | 1500 |