题目内容
【题目】在平面直角坐标系中,椭圆的左、右焦点分别为、,为椭圆短轴端点,若为直角三角形且周长为.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,直线,斜率的乘积为,求的取值范围.
【答案】(1);(2)
【解析】
(1)根据的形状以及周长,计算出的值,从而椭圆的方程可求;
(2)分类讨论直线的斜率是否存在:若不存在,直接分析计算即可;若存在,联立直线与椭圆方程,得到坐标对应的韦达定理形式,再根据条件将直线方程中的参数关系找到,由此即可化简计算出的取值范围.
(1)因为为直角三角形,所以,,
又周长为,所以,故,,,
所以椭圆:.
(2)设,,当直线斜率不存在时,
,,,所以,
又,解得,,.
当直线斜率存在时,设直线方程为,
由得,
得
即,
,
由得,即,
所以
所以.
练习册系列答案
相关题目
【题目】为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了“垃圾分类,从我做起”的知识问卷作答随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为“合格”.
(Ⅰ)由以上数据绘制成2×2联表,是否有95%以上的把握认为“性别”与“问卷结果”有关?
男 | 女 | 总计 | |
合格 | |||
不合格 | |||
总计 |
(Ⅱ)从上述样本中,成绩在60分以下(不含60分)的男女学生问卷中任意选2个,记来自男生的个数为,求的分布列及数学期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |