题目内容
【题目】设函数,().
(1)若曲线在点处的切线方程为,求实数a、m的值;
(2)若对任意恒成立,求实数a的取值范围;
(3)关于x的方程能否有三个不同的实根?证明你的结论.
【答案】(1),;(2);(3)不能,证明见解析
【解析】
(1)求出,结合导数的几何意义即可求解;
(2)构造,则原题等价于对任意恒成立,即时,,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;
(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.
(1),
,
曲线在点处的切线方程为,
,
解得.
(2)记,
整理得,
由题知,对任意恒成立,
对任意恒成立,即时,,
,解得,
当时,
对任意,,,
,
,即在单调递增,此时,
实数的取值范围为.
(3)关于的方程不可能有三个不同的实根,以下给出证明:
记,,
则关于的方程有三个不同的实根,等价于函数有三个零点,
,
当时,,
记,则,
在单调递增,
,即,
,
在单调递增,至多有一个零点;
当时,
记,
则,
在单调递增,即在单调递增,
至多有一个零点,则至多有两个单调区间,至多有两个零点.
因此,不可能有三个零点.
关于的方程不可能有三个不同的实根.
练习册系列答案
相关题目