题目内容
【题目】已知在中,角的对边分别为,且.
(1)求的值;
(2)若,求的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)本问考查解三角形中的的“边角互化”.由于求的值,所以可以考虑到根据余弦定理将分别用边表示,再根据正弦定理可以将转化为,于是可以求出的值;(2)首先根据求出角的值,根据第(1)问得到的值,可以运用正弦定理求出外接圆半径,于是可以将转化为,又因为角的值已经得到,所以将转化为关于的正弦型函数表达式,这样就可求出取值范围;另外本问也可以在求出角的值后,应用余弦定理及重要不等式,求出的最大值,当然,此时还要注意到三角形两边之和大于第三边这一条件.
试题解析:(1)由,
应用余弦定理,可得
化简得则
(2)
即
所以
法一. ,
则
=
=
=
又
法二
因为 由余弦定理
得,
又因为,当且仅当时“”成立.
所以
又由三边关系定理可知
综上
练习册系列答案
相关题目