题目内容
【题目】已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)
(1)求抛物线Γ的方程;
(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
【答案】(1)y2=4x;;(2)直线NL恒过定点(﹣3,0),理由见解析.
【解析】
(1)根据抛物线的方程,求得焦点F(,0),利用(2,2),表示点P的坐标,再代入抛物线方程求解.
(2)设M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因为A(3,﹣2),B(3,﹣6)在这两条直线上,分别代入两直线的方程可得y1y2=12,然后表示直线NL的方程为:y﹣y1(x),代入化简求解.
(1)由抛物线的方程可得焦点F(,0),满足(2,2)的P的坐标为(2,2),P在抛物线上,
所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以抛物线的方程为:y2=4x;
(2)设M(x0,y0),N(x1,y1),L(x2,y2),则y12=4x1,y22=4x2,
直线MN的斜率kMN,
则直线MN的方程为:y﹣y0(x),
即y①,
同理可得直线ML的方程整理可得y②,
将A(3,﹣2),B(3,﹣6)分别代入①,②的方程
可得,消y0可得y1y2=12,
易知直线kNL,则直线NL的方程为:y﹣y1(x),
即yx,故yx,
所以y(x+3),
因此直线NL恒过定点(﹣3,0).
【题目】某公司准备加大对一项产品的科技改造,经过充分的市场调研与模拟,得到x,y之间的一组数,其中x(单位:百万元)是科技改造的总投入,y(单位:百万元)是改造后的额外收益
x | 2 | 3 | 5 | 7 | 8 |
y | 5 | 8 | 12 | 14 | 16 |
其中,,是对当地GDP的增长贡献值.
(1)若从五组数据中任取两组,求至少有一组满足的概率;
(2)对于表中数据,甲、乙两个同学给出的拟合直线方程为:,,试用最小二乘法判断哪条直线的拟合程度更好.(附:;Q越小拟合度越好.)