题目内容

【题目】如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(Ⅰ) 求证:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由;
(Ⅲ) 求点D到平面PAM的距离.

【答案】Ⅰ)证法一:取AD中点O,连结OP,OC,AC,
依题意可知△PAD,△ACD均为正三角形,
所以OC⊥AD,OP⊥AD,又OC∩OP=O,OC平面POC,OP平面POC,
所以AD⊥平面POC,又PC平面POC,
所以PC⊥AD.
证法二:连结AC,依题意可知△PAD,△ACD均为正三角形,
又M为PC的中点,所以AM⊥PC,DM⊥PC,
又AM∩DM=M,AM平面AMD,DM平面AMD,
所以PC⊥平面AMD,
又AD平面AMD,所以PC⊥AD.(Ⅱ)解:当点Q为棱PB的中点时,A,Q,M,D四点共面,
证明如下:
取棱PB的中点Q,连结QM,QA,又M为PC的中点,所以QM∥BC,
在菱形ABCD中AD∥BC,所以QM∥AD,
所以A,Q,M,D四点共面.
(Ⅲ)解:点D到平面PAM的距离即点D到平面PAC的距离,
由(Ⅰ)可知PO⊥AD,又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,PO平面PAD,
所以PO⊥平面ABCD,即PO为三棱锥P﹣ACD的体高.
在Rt△POC中,
在△PAC中,PA=AC=2, ,边PC上的高AM=
所以△PAC的面积
设点D到平面PAC的距离为h,
由VDPAC=VPACD


所以
解得
所以点D到平面PAM的距离为

【解析】(Ⅰ)法一:取AD中点O,连结OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,从而AD⊥平面POC,由此能证明PC⊥AD.
法二:连结AC,依题意可知△PAD,△ACD均为正三角形,从而AM⊥PC,DM⊥PC,由此能证明PC⊥AD.(Ⅱ)当点Q为棱PB的中点时,A,Q,M,D四点共面.取棱PB的中点Q,连结QM,QA,由已知得QM∥BC,由此能证明A,Q,M,D四点共面.(Ⅲ)点D到平面PAM的距离即点D到平面PAC的距离,由已知得得PO为三棱锥P﹣ACD的体高,由VDPAC=VPACD , 能求出点D到平面PAM的距离.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网