题目内容

【题目】汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);

轿车A

轿车B

轿车C

舒适型

100

150

z

标准型

300

450

600

按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

【答案】
(1)解:设该厂这个月共生产轿车n辆,

由题意得 =

∴n=2000,

∴z=2000﹣(100+300)﹣150﹣450﹣600=400.


(2)解:设所抽样本中有a辆舒适型轿车,

由题意,得a=2.

因此抽取的容量为5的样本中,

有2辆舒适型轿车,3辆标准型轿车.

用A1,A2表示2辆舒适型轿车,

用B1,B2,B3表示3辆标准轿车,

用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,

则基本事件空间包含的基本事件有:

(A1,A2),(A1B1),(A1B2),

(A1,B3,),(A2,B1),(A2,B2)(A2,B3),

(B1B2),(B1,B3,),(B2,B3),共10个,

事件E包含的基本事件有:

(A1A2),(A1,B1,),(A1,B2),(A1,B3),

(A2,B1),(A2,B2),(A2,B3),共7个,

故 P(E)=

即所求概率为


(3)解:样本平均数 = (9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.

设D表示事件“从样本中任取一数,

该数与样本平均数之差的绝对不超过0.5”,

则基本事件空间中有8个基本事件,

事件D包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,

∴P(D)= ,即所求概率为


【解析】(1)根据用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,得每个个体被抽到的概率,列出关系式,得到n的值(2)由题意知本题是一个古典概型,试验发生包含的事件数和满足条件的事件数,可以通过列举数出结果,根据古典概型的概率公式得到结果.(3)首先做出样本的平均数,做出试验发生包含的事件数,和满足条件的事件数,根据古典概型的概率公式得到结果.
【考点精析】利用分层抽样对题目进行判断即可得到答案,需要熟知先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网