题目内容
(本小题满分13分)
在数列{
中,
(
且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142400973783.gif)
(1)求证
;(2)求证
;
(3)若存在
,使得
,求证:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401129638.gif)
在数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142400926240.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142400942248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142400958377.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142400973783.gif)
(1)求证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142400989536.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401004559.gif)
(3)若存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401036386.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401114367.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401129638.gif)
见解析
证明:(1)(解法一)1当n=1时,
,命题成立;…………… 1分
2设当n=k时(
且n
)命题成立,即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401207372.gif)
而
时,
[![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401254620.gif)
,
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401519128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401535601.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401519128.gif)
,
时,
,命题也成立
由12对一切
有
………………………………5分
(解法二)(反证法)当
时解得
,
,
矛盾
当
时,
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401878683.gif)
则有
,那么有
矛盾
…………………………………………………………5分
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401956765.gif)
,
,
…………………………8分
(3)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402159370.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402174651.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231424021901237.gif)
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402206470.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231424022211147.gif)
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402377647.gif)
,又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402486462.gif)
……………………………………………………13分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401160306.gif)
2设当n=k时(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401176243.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401192349.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401207372.gif)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401223382.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401238664.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401254620.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401316391.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401488405.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401504525.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401519128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401535601.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401519128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401660604.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401675393.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401722393.gif)
由12对一切
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401753379.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401769373.gif)
(解法二)(反证法)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401784362.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401800378.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401816273.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401831252.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401847370.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401862611.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401878683.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401894447.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401909377.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401925256.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401940386.gif)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401956765.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142401987393.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402018457.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402034406.gif)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402143414.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402159370.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402174651.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231424021901237.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402206470.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231424022211147.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402346619.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402362525.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402377647.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402393663.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402486462.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142402502662.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目