题目内容
【题目】如图(1),边长为的正方形中,,分别为、上的点,且,现沿把剪切、拼接成如图(2)的图形,再将,,沿,,折起,使、、三点重合于点,如图(3).
(1)求证:;
(2)求二面角最小时的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)利用图形翻折的几何关系可得出,,然后由直线与平面垂直的判定定理可得出平面,由此可证明出;
(2)以为原点,、、分别为、、轴建立空间直角坐标系,令,,可得出,求出平面和平面的法向量,然后利用空间向量法结合基本不等式可求出二面角最小时的余弦值.
(1)折叠前,,折叠后,,
又,所以平面,因此;
(2)由(1)及题意知,因此以为原点,、、分别
为、、轴建立空间直角坐标系如图:
令,,,所以,,
设平面法向量为
则所以,令,则
又平面法向量为,
设二面角的大小为,所以,
又,
当且仅当取等号,所以.
所以二面角最小时的余弦值为.
练习册系列答案
相关题目
【题目】由于工作需要,某公司准备一次性购买两台具有智能打印、扫描、复印等多种功能的智能激光型打印机.针对购买后未来五年内的售后,厂家提供如下两种方案:
方案一:一次性缴纳元,在未来五年内,可免费上门维修次,超过次后每次收取费用元;
方案二:一次性缴纳元,在未来五年内,可免费上门维修次,超过次后每次收取费用元.
该公司搜集并整理了台这款打印机使用五年的维修次数,所得数据如下表所示:
维修次数 | ||||
台数 |
以这台打印机使用五年的维修次数的频率代替台打印机使用五年的维修次数的概率,记表示这两台智能打印机五年内共需维修的次数.
(1)求的分布列及数学期望;
(2)以两种方案产生的维修费用的期望值为决策依据,写出你的选择,并说明理由.