题目内容
【题目】设函数.
(1)若当时,取得极值,求的值,并求的单调区间.
(2)若存在两个极值点,求的取值范围,并证明:.
【答案】(1),的单调增区间为,单调减区间为. (2),证明见解析
【解析】
(1)求导数,由题意可知为方程的根,求解值,即可.再令导数,,分别求解单调增区间与单调减区间,即可.
(2)函数存在两个极值点,等价于方程即在上有两个不等实根,则,即可. 变形整理为;若证明不等式,则需证明,由变形为,不妨设,即证,令,则,求函数的取值范围,即可证明.
(1)
时,取得极值.
.
解得或
解得
的单调增区间为,单调减区间为.
(2)
存在两个极值点
方程即在上有两个不等实根.
,
.
所证不等式等价于
即
不妨设,即证
令,
,在上递增.
成立.
成立.
【题目】随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1100名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:
分组 | 频数(单位:名) |
使用“余额宝” | |
使用“财富通” | |
使用“京东小金库” | 40 |
使用其他理财产品 | 60 |
合计 | 1100 |
已知这1100名市民中,使用“余额宝”的人比使用“财富通”的人多200名.
(1)求频数分布表中,的值;
(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为,“京东小金库”的平均年化收益率为,有3名市民,每个人理财的资金有10000元,且分别存入“余额宝”“财富通”“京东小金库”,求这3名市民2018年理财的平均年化收益率;
(3)若在1100名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取5人,然后从这5人中随机选取2人,求“这2人都使用‘财富通’”的概率.
注:平均年化收益率,也就是我们所熟知的利率,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.