题目内容
【题目】某学校组织了垃圾分类知识竞赛活动.设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断,将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照,,,,分组,绘成频率分布直方图如图:
(1)分别求出所抽取的人中得分落在组和内的人数;
(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望;
(3) 如果某选手将抽到的20张卡片逐一随机放入四个箱子,能否认为该选手不会得到100分?请说明理由.
【答案】(1)抽取的人中得分落在组的人数有人,得分落在组的人数有人;(2)分布列见解析,1.2;(3)答案不唯一,具体见解析.
【解析】
(1)根据频率分布直方图即可得到满足题意的人数;
(2)的所有可能取值为,,,求出相应的概率值,即可得到的分布列和数学期望;
(3)该选手获得100分的概率是,结合此数据作出合理的解释.
(1)由题意知,所抽取的人中得分落在组的人数有(人),
得分落在组的人数有(人).
所以所抽取的人中得分落在组的人数有人,得分落在组的人数有人.
(2)的所有可能取值为,,.
, , .
所以的分布列为
所以的期望.
(3)答案不唯一.
答案示例1:可以认为该选手不会得到100分.理由如下:
该选手获得100分的概率是,概率非常小,故可以认为该选手不会得到100分.
答案示例2:不能认为该同学不可能得到100分.理由如下:
该选手获得100分的概率是,虽然概率非常小,但是也可能发生,故不能认为该选手不会得到100分.
【题目】某学校数学建模小组为了研究双层玻璃窗户中每层玻璃厚度(每层玻璃的厚度相同)及两层玻璃间夹空气层厚度对保温效果的影响,利用热传导定律得到热传导量满足关系式:,其中玻璃的热传导系数焦耳/(厘米度),不流通、干燥空气的热传导系数焦耳/(厘米度), 为室内外温度差.值越小,保温效果越好.现有4种型号的双层玻璃窗户,具体数据如下表:
型号 | 每层玻璃厚度 (单位:厘米) | 玻璃间夹空气层厚度 (单位:厘米) |
A型 | ||
B型 | ||
C型 | ||
D型 |
则保温效果最好的双层玻璃的型号是________型.