题目内容
3.设全集U={-2,-1,0,1,2},集合A={1,2},B={-2,1,2},则A∪(∁UB)等于( )A. | {-1,0,1,2} | B. | {1} | C. | {1,2} | D. | ∅ |
分析 根据全集U及B求出B的补集,找出A与B补集的并集即可.
解答 解:∵全集U={-2,-1,0,1,2},集合A={1,2},B={-2,1,2},
∴∁UB={-1,0},
则A∪(∁UB)={-1,0,1,2},
故选:A.
点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
13.设F1,F2为椭圆的两焦点,B为椭圆短轴的一个端点,若△BF1F2为正三角形,则椭圆的离心率为( )
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 2 |
14.一个几何体的三视图如图所示,则这个几何体的体积为( )
A. | $\frac{(8+π)\sqrt{3}}{6}$ | B. | $\frac{(12+π)\sqrt{3}}{6}$ | C. | $\frac{(12+π)\sqrt{3}}{2}$ | D. | $\frac{(6+π)\sqrt{3}}{3}$ |
11.已知F1、F2是椭圆的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此椭圆上,则此椭圆的离心率为( )
A. | $\frac{\sqrt{3}-1}{2}$ | B. | $\sqrt{2}$-1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{3}$-1 |
18.圆x2+y2-2x+4y+3=0的圆心坐标为( )
A. | (-2,4) | B. | (2,-4) | C. | (1,-2) | D. | (-1,2) |
8.对于集合M,定义函数fM(x)=$\left\{\begin{array}{l}{-1,x∈M}\\{1,x∉M}\end{array}\right.$,对于两个集合M、N,定义集合M⊕N={x|fM(x)•fN(x)=-1},已知A={2,4,6,8,10},B={1,2,4,5,6,8,9},则集合A⊕B=( )
A. | {1,5,9,10} | B. | {1,5,9} | C. | {2,4,6} | D. | {2,4,6,8} |