题目内容
13.已知符号函数sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,则函数f(x)=sgn(lnx)-|lnx|的零点个数为2.分析 化简f(x)=sgn(lnx)-|lnx|=$\left\{\begin{array}{l}{1-lnx,x>1}\\{0,x=1}\\{-1+lnx,0<x<1}\end{array}\right.$,从而求出函数的零点即可.
解答 解:由题意,
f(x)=sgn(lnx)-|lnx|
=$\left\{\begin{array}{l}{1-lnx,x>1}\\{0,x=1}\\{-1+lnx,0<x<1}\end{array}\right.$,
显然x=1是函数f(x)的零点,
当x>1时,
令1-lnx=0得,x=e;
则x=e是函数f(x)的零点;
当0<x<1时,
-1+lnx<0,故没有零点;
故函数f(x)=sgn(lnx)-|lnx|的零点个数为2;
故答案为:2.
点评 本题考查了分段函数的应用及函数的零点与方程的根的关系应用,属于基础题.
练习册系列答案
相关题目
3.设全集U={-2,-1,0,1,2},集合A={1,2},B={-2,1,2},则A∪(∁UB)等于( )
A. | {-1,0,1,2} | B. | {1} | C. | {1,2} | D. | ∅ |
18.已知集合A={0,1,2,3},集合B={x|x2≤4},则A∩B=( )
A. | {3} | B. | {1,2} | C. | {0,1,2} | D. | {0,1,2,3} |
5.房山区某高中为了推进新课程改革,满足学生全面发展的需求,决定从高一年级开始,在每周的周一、周三、周五的格外活动期间同时开设信息技术、美术素描和音乐欣赏辅导讲座,每位同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:
(1)求音乐欣赏辅导讲座在周一、周三、周五都不满座的概率;
(2)设周三各辅导讲座满座的科目数为X,求随机变量X的分布列和数学期望.
信息技术 | 美术素描 | 音乐欣赏 | |
周一 | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{2}$ |
周三 | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{2}{3}$ |
周五 | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{2}{3}$ |
(2)设周三各辅导讲座满座的科目数为X,求随机变量X的分布列和数学期望.