题目内容
8.对于集合M,定义函数fM(x)=$\left\{\begin{array}{l}{-1,x∈M}\\{1,x∉M}\end{array}\right.$,对于两个集合M、N,定义集合M⊕N={x|fM(x)•fN(x)=-1},已知A={2,4,6,8,10},B={1,2,4,5,6,8,9},则集合A⊕B=( )A. | {1,5,9,10} | B. | {1,5,9} | C. | {2,4,6} | D. | {2,4,6,8} |
分析 通过新定义计算即得结论.
解答 解:由M⊕N的定义可知,fM(x)•fN(x)=-1即x∈M\N或x∈N\M,
∵A={2,4,6,8,10},B={1,2,4,5,6,8,9},
∴A⊕B={1,5,9,10},
故选:A.
点评 本题考查集合的补集运算,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
18.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦点为F,斜率为$\sqrt{3}$的直线过F与椭圆交于M、N两点,且$\overrightarrow{MF}=2\overrightarrow{FN}$,则椭圆的离心率为( )
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{2}{3}$ |
16.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的短轴长为( )
A. | $\sqrt{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 4 |
3.设全集U={-2,-1,0,1,2},集合A={1,2},B={-2,1,2},则A∪(∁UB)等于( )
A. | {-1,0,1,2} | B. | {1} | C. | {1,2} | D. | ∅ |
18.已知集合A={0,1,2,3},集合B={x|x2≤4},则A∩B=( )
A. | {3} | B. | {1,2} | C. | {0,1,2} | D. | {0,1,2,3} |